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Available on Monday, July 21 

 

You’ve probably heard of it: the notorious Connections puzzle, infamously crafted by 

puzzle creator Wyna Liu and released daily by the New York Times. In Connections, your 

goal is to form four groups of four items each, where each group shares something in 

common. There’s always exactly one solution for each puzzle, and each group is more 

difficult than the previous. If you haven’t played this game before, try solving today’s 

puzzle! Chances are it’s not that easy. This experience of frustration will form the 

backbone of this assignment. >:-) 

 

In this assignment, we will harness the power of embeddings to create a Connections 

solver! Connections and embeddings hold a special affinity for each other: Connections 

tests the similarity between words in a variety of manners (including, but not limited to, 

homophony, polysemy, association, synonymy, etc.), and the vector space of embeddings 

inherently describes semantic similarity!  

 

We’ll see just how well we can utilize these embeddings to best Wyna’s red herrings
1
 and 

other assortments of tricks. We’ll be forming our quartets by scoring words based on 

their cosine similarity score. Most importantly, we’ll be judging these embeddings based on 

a variety of metrics (that we’ll design, create, and implement!) and use various scoring 

tools to compare our solutions against Wyna’s. We hope that this assignment is an exciting 

and fun journey! 

 

Assignment Logistics 

 

Starter Files 
 

The starter files can be found here. 

In this folder, you will find: 

-​ connections.py: a Python file where we’ll build our solver 
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 Something that misleads or distracts 

 

https://www.nytimes.com/games/connections/
https://www.wynaliu.com/about
https://drive.google.com/drive/folders/1H9JKL9NgYBMAtcFVkjTcyoKtdSNh4VlK?usp=sharing


-​ graphing.py: a Python file where we’ll analyze and graph our solutions 

-​ openai_embeddings.csv: a CSV file containing the embeddings of some of the 

most common words in the English language; this file also contains the embeddings 

of words in the first ~760 puzzles 

-​ openai_embeddings.pkl: a pickled file containing a Python dictionary object of our 

embeddings as a bytestream—don’t worry about this file, just know that we’re using it 

behind the scenes to quickly retrieve these embeddings 

-​ puzzles.json: a JSON file containing an archive of past Connections puzzles 

-​ util.py: a Python file that provides helpful utility functions, including solution 

retrieval and embeddings lookup 

-​ investigation.txt: where you’ll answer some questions in Milestone 5 

 

⚠️ Note: If you haven’t already, you will need to pip install the following libraries: 
-​ pandas 

-​ seaborn  

-​ scikit-learn 

 

Resources 
 

Feel free to review the slides from this week. 

 

Getting Help—Your Anchors and Lighthouses 
 

We’re here to help you if you run into any issues along the way. Swing by our (daily!) office 

hours, or drop a post over on the Ed forum. Swing by! 

 

Submission 
 

Please only submit the files that you edited. This means that you should submit the 

following files: 

-​ connections.py 

-​ graphing.py 

-​ investigation.txt 

 

As usual, upload these files to the assignment dropbox at the regular submission site. :) 

 

 



⛵ Milestone 1 - Assembling our Ship: Retrieving Embeddings 

 

⚠️ Note: There are no deliverables in Milestone 1. The purpose of this Milestone is to 
get you acquainted with the structure of the solver and introduce you to some utility 
functions (and constants!) that will prove useful in later Milestones. 

 

As we know, the embedding of a word (think: a list with around a thousand numbers) 

captures the meaning of the word. Courtesy of OpenAI’s API, we’ve already assembled 

embeddings of the words used in the first ~760 Connections puzzles and the top 100k 

most common words in the English language. You will be testing your solver on these 760 

puzzles; you can look at all of the puzzles in puzzles.json—feel free to look through and 

pick one that you like!
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You will need the embeddings of the words in the puzzle you would like to solve. For 

example, let’s say that these are your words. Note that there are 4 x 4 = 16 words in each 

puzzle! 

 

todays_words = ["brush", "dress",  "shave", "shower", \​
                "nick",  "pocket", "tidy",  "smart",  \​
                "key",   "touch",  "palm",  "sharp",  \​
                "pinch", "mile",   "neat",  "birth"] 

 

To get the embeddings of these 16 words, use the function get_todays_embeddings. 

 

todays_embeddings = get_todays_embeddings(todays_words) 

 

This will return a dictionary mapping each word to its corresponding embedding. For 

example, 

 

print(todays_embeddings["brush"]) 

 

will print out 

 

2
 Unfortunately, we only offer support for the first ~760 puzzles in the Connections archive due to the 

already-set-in-stone CSV file. Feel free to use your own OpenAI API key to add your own embeddings if you would 

like to try out a puzzle from the future that contains words not currently stored in our file. 

 



[-0.01645724  0.00556806 -0.01460918 ... -0.00528129 -0.02016928 

  0.01229912] 

 

These len(todays_embeddings[“brush”]) = ~3000 numbers describe the meaning of 

"brush". Notice that it’s a ~3000-dimensional vector! Much more expressive than 

word2vec’s embeddings (which only have ~300 dimensions)—around 10x more expressive! 

Wow! 

 

If you want to try an arbitrary puzzle, you can use the retrieve_puzzles function. Each 

puzzle has a special, New York Times-certified, official ID associated with it. This 

function accepts a path to the JSON file where all the puzzles are stored and returns a 

dictionary mapping each puzzle’s ID to its answers. With this function, you can look up 

the answer to the above puzzle with its corresponding ID number 751. For example, 

 

puzzles = retrieve_puzzles(PUZZLES_PATH) 

print(puzzles[751]) 

 

will print out 

 

[['nick', 'palm', 'pinch', 'pocket'], ['brush', 'dress', 'shave', 'shower'], ['neat', 'sharp', 

'smart', 'tidy'], ['birth', 'key', 'mile', 'touch']] 

 

where each list in this quartet is a group. Notice that it’s a list of lists (LoL)! 

 

If you want to convert this solution into a list of words that you can then feed into the 

solver to generate our solution, you can use the function convert_to_words—think of it 

as a reverser. For example, 

 

puzzles = retrieve_puzzles(PUZZLES_PATH) 

print(convert_to_words(puzzles[751])) 

 

will print out 

 

['nick', 'palm', 'pinch', 'pocket', 'brush', 'dress', 'shave', 'shower', 'neat', 'sharp', 

'smart', 'tidy', 'birth', 'key', 'mile', 'touch'] 

 

 



All of these functions are in util.py, where you can look through them and study how 

they work, and there are even more functions that we provide that we hope will serve you 

well as you attempt to solve these puzzles. We highly recommend going through this file 

and playing around with some of the functions. And, of course, we provide pre-defined 

constants that we strongly suggest you use in the solver, as it will be helpful for you (and 

us!) to read through your code. 

 

💰 Milestone 2 - Searching for Treasure: Implementing a Greedy Heuristic 

 

Now that we have these embeddings at our disposal, how do we get them to do something 

cool?  

 

A Prelude: Cosine Similarity  
 
How do we judge how semantically similar two words are? For example, if I gave you 

the words “king” and “queen”, how “close” or “similar” would they be? At first glance, 

it seems that they could be opposites—but they also have “royalness” associated with 

each of the words! How do we quantify this? Luckily, these embeddings (think: 

vectors with thousands of entries) are closer to each other in this vector space if 

they’re semantically closer to each other. Somehow, some way, the embedding model 

has trained these vectors to produce this behavior.  

 

So, a smaller angle between the two vectors means that the two words are 

semantically closer (at least according to the embedding model)! Great! We have a 

scoring system! But, it’s kind of awkward for a smaller number to represent a better 

score, so we take the cosine of that number so that closer vectors now score close to 

a 1, and more antiparallel vectors score closer to a 0. 

 

You can calculate the cosine similarity of two vectors using the cosine_similarity 

function from util.py. Take a look at the function to see how it works in more 

detail. 

 

We have a way to score the similarity of two words—reframed, two vectors—now! Make no 

mistake: this is incredibly noteworthy and remarkable! We have a way to quantify semantic 

 



associations between words—we’re quantifying the firing of neurons inside our brain when 

we associate, for example, “Gojo” or “Itadori” together.
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Armed with this scoring metric, let’s start looking for some treasure! Unfortunately, we 

can’t brute force every single possible quartet that could be out there and look for a 

solution—there are over 2 million combinations! Blind guessing isn’t going to cut it. 

Instead, we’ll sacrifice some accuracy for efficiency. Your task is to implement a greedy 

heuristic algorithm. It’s a problem-solving approach where we make the most optimal 
choice at each stage, with the hope of attaining an accurate, or at least close-to-accurate, 

solution. 

 

In this assignment, the greedy heuristic will look something like this. Once again, let’s say 

that these are your 16 words: 

 

todays_words = ["brush", "dress",  "shave", "shower", \​
                "nick",  "pocket", "tidy",  "smart",  \​
                "key",   "touch",  "palm",  "sharp",  \​
                "pinch", "mile",   "neat",  "birth"] 

 

We’ll have to have a starting point for this algorithm—let’s start with "brush", for 

example. This is what we’ll colloquially call our source. At this step, we’re going to compute 

all of the cosine similarities between "brush" and every other word. Then, we’re going to 

take the word that has the highest cosine similarity and add it to our group, a list of four 

words. It turns out that the closest word to "brush” is "shave”! So, we add "shave” into 

this group with "brush”. Then, we find the word that has the highest cosine similarity 

score with "brush” and "shave”; put another way, we average the embeddings already in 

the group and compute the cosine similarities of the remaining words with this new 

“centroid” embedding, and we add the word that resulted in the highest cosine similarity 

score to the group. We continue this process until we have four words in a group. Note 

that our source word when forming a group will always be the first word in the list (for 

now—we’ll revise this later once we can numerically compare quartets; see the next 

Milestone for more details on how scoring will work). After forming a group, continue this 

process until you have four groups. These four groups form a quartet. We will be returning 

this quartet as our “best solution”. 
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 Haven’t watched Jujutsu Kaisen yet? You’re missing out… 

 



Implement this algorithm in the function find_best_quartet. A gentle reminder that 

decomposition is your friend! Don’t compile everything into a single function. :) 

 

💡 Hint: Remember that lists are mutable! This leads to consequences such as this one: 

 

>>> scholars = ["Walter Benjamin", "Edward Said",  "Stuart Hall"] 

>>> 

>>> thinkers = scholars 

>>> scholars.remove("Walter Benjamin") 

>>> 

>>> print(thinkers) 

["Edward Said",  "Stuart Hall"] 

 

Notice that "Walter Benjamin" is missing! 

 

To “truly copy” (i.e. shallow copy) a list, you can use the following (funky) syntax: 

>>> thinkers = scholars[:]  # shallow copies `scholars`! 

 

Replacing the thinkers = scholars line with the line above, the print statement will now print out: 

 

>>> print(thinkers) 

["Walter Benjamin", "Edward Said",  "Stuart Hall"] 

 

🎯 Milestone 3 - Alas, Treasure? Scoring Solutions… 

 

It’s time to judge our solution! We’ll be judging our solution based on three different 

metrics (the heart and soul of embeddings!): 

-​ The internal score measures how cohesive a group of four words is. Loop through 

each word and calculate all the pairwise cosine similarities. Return a weighted sum 

of the average of these similarity scores and the minimum of the similarities (to 

penalize having a weak link). Put your code inside 

calculate_group_internal_score. 

-​ The external score measures how different the words in a group are from words in 

other groups. Return the negative of the mean of all the pairwise cosine similarities 

of words in the group versus the words in the other groups. Put your code inside 

calculate_group_external_score. 

-​ The word ambiguity score measures how semantically ambiguous a single word is in 

the context of a set of words. Return the maximum of all the pairwise cosine 

similarities between this word and the set of words. This means that if this word is 

 



highly similar to another word, it must be semantically ambiguous or have several 

different meanings attached to it. Put your code inside 

calculate_word_ambiguity. 

 

Finally, calculate the overall or total score of this quartet in calculate_total_score by 

taking a weighted sum of all three scores. Note that for the word ambiguity penalty, since 

calculate_word_ambiguity only looks at a single word, take the average of all of the 

word ambiguity scores and make it negative—this will be your overall word ambiguity 

penalty. See the function signature and return statement of calculate_total_score 

for some more insight. 

 

🗺️ Milestone 4 - Looking For More Treasure: Refining Our Search 

Algorithm 

 

A limitation of our current search algorithm is that it relies entirely on the starting 

node—the word we begin with. Refine our algorithm by looping through all words in the 

puzzle, using each as a starting point in the search, and return the quartet that attains the 

best score from calculate_total_score in the previous Milestone. You’ll only need to 

add a few lines to find_best_quartet. 

 

🧈 Milestone 5 - Fool’s Gold: Comparing Our Solutions Against Wyna’s 

Answer 

 

In this milestone, you’ll be making two graphs: a histogram and a heatmap. 

 

Make a histogram of the scores of randomly formed quartets from your selected puzzle. 

Draw vertical lines where Wyna’s solution would fall and where your solution would fall. Put 

your code inside graph_scores. We've already provided the function 

generate_random_quartet for you; remember to use it—helper functions are your best 

friend! 

 

Your histogram should look something like this: 

 



 

 

Next, make a heatmap of your favorite puzzle inside graph_pairwise_similarities. 

The result should be a 16x16 grid with each square cell denoting the cosine similarity score 

between the two words.  

 

💡 Hint: You’ll need the heatmap function from the seaborn library with the optional argument 

square set to True. 

 

 

Your heatmap should look something like this: 

 



 

 

🏝️ Milestone 6 - Being One With The Island: Answering Your Questions 

About The Solver 

 

Now that you’ve traversed the island, it’s time to get to know it better! Answer the 

following questions in investigation.txt: 

1.​ Why does our scoring system work? What does it account for, and what doesn’t it 

account for? What are some other scoring metrics you can think of? Answer in around 

3-4 sentences. 

2.​ Look at the histogram that you made in Milestone 5. What can you say about the 

distribution of these randomly sampled quartets? Why does our solution sometimes 

attain a higher score than Wyna’s solution when our solution is incorrect? Answer in 

around 4 sentences, and more thoughts are welcome if you so desire. :) 

3.​ In your pairwise similarity cosine graph made in Milestone 4, can you spot any red 

herrings for your chosen puzzle? What are some unique quirks about this graph 

 



that you may notice? What do you see, or what don’t you see? Answer in around 5 

sentences, and, of course, more thoughts are always welcome. 

 

Now, come up with two questions about the solver that you would like to investigate and 

tweak in the solver. Perhaps this is how the solver scores solutions, how we search for a 

solution, or examining the overall accuracy of the solver—the possibilities are endless!  

 

Jot down your two questions in investigation.txt, and explain how you answered these 

questions and what your results after tweaking reveal about the solver. 

 

 

 

 

 

Good luck with HW8, everyone! 💫 
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