Solving Connections: Thinking Like Wyna

Assignment by Kevin Wang,
with cheerleading from Prof. Zachary Dodds,
and support from all the Scripting For All ‘25 team

Available on Monday, July 21

You've probably heard of it: the notorious Connections puzzle, infamously crafted by
puzzle creator Wyna Liu and released daily by the New York Times. In Connections, your
goal is to form four groups of four items each, where each group shares something in
common. There's always exactly one solution for each puzzle, and each group is more
difficult than the previous. If you haven't played this game before, try solving today's
puzzle! Chances are it's not that easy. This experience of frustration will form the
backbone of this assignment. >:-)

In this assignment, we will harness the power of embeddings to create a Connections
solver! Connections and embeddings hold a special affinity for each other: Connections
tests the similarity between words in a variety of manners (including, but not limited to,
homophony, polysemy, association, synonymy, efc.), and the vector space of embeddings
inherently describes semantic similarity!

We'll see just how well we can utilize these embeddings to best Wyna's red herrings' and
other assortments of tricks. We'll be forming our quartets by scoring words based on
their cosine similarity score. Most importantly, we'll be judging these embeddings based on
a variety of metrics (that we'll design, create, and implement!) and use various scoring
tools to compare our solutions against Wyna's. We hope that this assignment is an exciting
and fun journey!

Assignment Logistics
Starter Files
The starter files can be found here.

In this folder, you will find:
- connections.py: aPython file where we'll build our solver

! Something that misleads or distracts

https://www.nytimes.com/games/connections/
https://www.wynaliu.com/about
https://drive.google.com/drive/folders/1H9JKL9NgYBMAtcFVkjTcyoKtdSNh4VlK?usp=sharing

- graphing.py: a Python file where we'll analyze and graph our solutions

- openai_embeddings.csv: a CSV file containing the embeddings of some of the
most common words in the English language; this file also contains the embeddings
of words in the first ~760 puzzles

- openai_embeddings.pkl: a pickled file containing a Python dictionary object of our
embeddings as a bytestream—don't worry about this file, just know that we're using it
behind the scenes to quickly retrieve these embeddings

- puzzles.json: a JSON file containing an archive of past Connections puzzles

- util.py: aPython file that provides helpful utility functions, including solution
retrieval and embeddings lookup

- 1dinvestigation.txt: where you'll answer some questions in Milestone 5

I. Note: If you haven't already, you will need to pip install the following libraries:
- pandas
- seaborn
- scikit-learn

Resources
Feel free to review the slides from this week.
Getting Help—Your Anchors and Lighthouses

We're here to help you if you run into any issues along the way. Swing by our (daily!) office
hours, or drop a post over on the Ed forum. Swing by!

Submission

Please only submit the files that you edited. This means that you should submit the
following files:

- connections.py

- graphing.py

- 1lnvestigation.txt

As usual, upload these files to the assignment dropbox at the regular submission site. :)

£\ Milestone 1 - Assembling our Ship: Retrieving Embeddings

I. Note: There are no deliverables in Milestone 1. The purpose of this Milestone is to
get you acquainted with the structure of the solver and introduce you to some utility
functions (and constants!) that will prove useful in later Milestones.

As we know, the embedding of a word (think: a list with around a thousand numbers)
captures the meaning of the word. Courtesy of OpenATI's API, we've already assembled
embeddings of the words used in the first ~760 Connections puzzles and the top 100k
most common words in the English language. You will be testing your solver on these 760
puzzles; you can look at all of the puzzles in puzzles.json—feel free to look through and
pick one that you like!?

You will need the embeddings of the words in the puzzle you would like to solve. For
example, let's say that these are your words. Note that there are 4 x 4 = 16 words in each
puzzle!

todays_words = ["brush", "dress", "shave", "shower", \
"nick", "pocket", "tidy", "smart", \
"key", "touch", "palm", "sharp", \

pinch", "mile", "neat", "birth"]

To get the embeddings of these 16 words, use the function get_todays_embeddings.
todays_embeddings = get todays_embeddings(todays words)

This will return a dictionary mapping each word to its corresponding embedding. For
example,

print(todays_embeddings["brush"])

will print out

? Unfortunately, we only offer support for the first ~760 puzzles in the Connections archive due to the
already-set-in-stone CSV file. Feel free to use your own OpenAI API key to add your own embeddings if you would
like to try out a puzzle from the future that contains words not currently stored in our file.

[-0.01645724 ©.00556806 -0.01460918 ... -0.00528129 -0.02016928
0.01229912]

These len(todays_embeddings[“brush”]) = ~3000 numbers describe the meaning of
"brush". Notice that it's a ~3000-dimensional vector! Much more expressive than
word2vec's embeddings (which only have ~300 dimensions)—around 10x more expressive!
Wow!

If you want to try an arbitrary puzzle, you can use the retrieve_puzzles function. Each
puzzle has a special, New York Times-certified, official ID associated with it. This
function accepts a path to the JSON file where all the puzzles are stored and returns a
dictionary mapping each puzzle's ID to its answers. With this function, you can look up
the answer to the above puzzle with its corresponding ID number 751. For example,

puzzles = retrieve_puzzles(PUZZLES_PATH)
print(puzzles[751])

will print out

[['nick’, ‘palm’, 'pinch’, 'pocket'], ['brush’, ‘dress’, 'shave’, ‘'shower'], ['neat’, 'sharp’,
‘smart’, 'tidy'], ['birth’, 'key', 'mile’, 'touch']]

where each list in this quartet is a group. Notice that it's a list of lists (LoL)!

If you want to convert this solution into a list of words that you can then feed into the
solver to generate our solution, you can use the function convert_to_words—think of it
as a reverser. For example,

puzzles = retrieve_puzzles(PUZZLES_PATH)
print(convert_to_words(puzzles[751]))

will print out

['nick’, 'palm’, ‘pinch’, ‘pocket’, ‘brush’, 'dress’, ‘shave’, 'shower’, 'neat’, ‘sharp’,
‘smart’, 'tidy', 'birth’, 'key', 'mile’, 'touch']

All of these functions are in util.py, where you can look through them and study how
they work, and there are even more functions that we provide that we hope will serve you
well as you attempt to solve these puzzles. We highly recommend going through this file
and playing around with some of the functions. And, of course, we provide pre-defined
constants that we strongly suggest you use in the solver, as it will be helpful for you (and
us!) to read through your code.

¢ Milestone 2 - Searching for Treasure: Implementing a Greedy Heuristic

Now that we have these embeddings at our disposal, how do we get them to do something
cool?

A Prelude: Cosine Similarity

How do we judge how semantically similar two words are? For example, if I gave you
the words “king" and "queen”, how "close” or “similar” would they be? At first glance,
it seems that they could be opposites—but they also have "royalness" associated with
each of the words! How do we quantify this? Luckily, these embeddings (think:
vectors with thousands of entries) are closer to each other in this vector space if
they're semantically closer to each other. Somehow, some way, the embedding model
has trained these vectors to produce this behavior.

So, a smaller angle between the two vectors means that the two words are
semantically closer (at least according to the embedding model)! Great! We have a
scoring system! But, it's kind of awkward for a smaller number to represent a better
score, so we take the cosine of that number so that closer vectors now score close to
a 1, and more antiparallel vectors score closer to a 0.

You can calculate the cosine similarity of two vectors using the cosine_similarity
function from util.py. Take a look at the function to see how it works in more
deftail.

We have a way to score the similarity of two words—reframed, two vectors—now! Make no
mistake: this is incredibly noteworthy and remarkable! We have a way to quantify semantic

associations between words—we're quantifying the firing of neurons inside our brain when
we associate, for example, "Gojo" or “"Itadori" together.’?

Armed with this scoring metric, let's start looking for some treasure! Unfortunately, we
can't brute force every single possible quartet that could be out there and look for a

solution—there are over 2 million combinations! Blind guessing isn't going to cut it.

Instead, we'll sacrifice some accuracy for efficiency. Your task is to implement a greedy
heuristic algorithm. It's a problem-solving approach where we make the most optimal
choice at each stage, with the hope of attaining an accurate, or at least close-to-accurate,

solution.

In this assignment, the greedy heuristic will look something like this. Once again, let's say
that these are your 16 words:

todays_words = ["brush", "dress", "shave", "shower", \
"nick", "pocket", "tidy", "smart", \
"key", "touch", "palm", "sharp", \

pinch", "mile", "neat", "birth"]

We'll have to have a starting point for this algorithm—let's start with "brush”, for
example. This is what we'll colloquially call our source. At this step, we're going to compute
all of the cosine similarities between “brush™ and every other word. Then, we're going to
take the word that has the highest cosine similarity and add it to our group, a list of four
words. It turns out that the closest word to "brush” is "shave”! So, we add "shave” into
this group with "brush”. Then, we find the word that has the highest cosine similarity
score with "brush” and "shave”; put another way, we average the embeddings already in
the group and compute the cosine similarities of the remaining words with this new
“centroid” embedding, and we add the word that resulted in the highest cosine similarity
score to the group. We continue this process until we have four words in a group. Note
that our source word when forming a group will always be the first word in the list (for
now—we'll revise this later once we can numerically compare quartets; see the next
Milestone for more details on how scoring will work). After forming a group, continue this
process until you have four groups. These four groups form a quartet. We will be returning
this quartet as our "best solution”.

% Haven't watched Jujutsu Kaisen yet? You're missing out...

Implement this algorithm in the function find_best_quartet. A gentle reminder that
decomposition is your friend! Don't compile everything into a single function. :)

Hint: Remember that lists are mutable! This leads to consequences such as this one:

["Walter Benjamin", "Edward Said", "Stuart Hall"]

>>> scholars
>>>

>>> thinkers = scholars

>>> scholars.remove("Walter Benjamin")
>>>

>>> print(thinkers)

["Edward Said", "Stuart Hall"]

Notice that "Walter Benjamin" is missing!

To “truly copy” (i.e. shallow copy) a list, you can use the following (funky) syntax:
>>> thinkers = scholars[:] # shallow copies “scholars’!

Replacing the thinkers = scholars line with the line above, the print statement will now print out:

>>> print(thinkers)
["Walter Benjamin", "Edward Said", "Stuart Hall"]

@ Milestone 3 - Alas, Treasure? Scoring Solutions...

It's time to judge our solution! We'll be judging our solution based on three different
metrics (the heart and soul of embeddings!):

- The internal score measures how cohesive a group of four words is. Loop through
each word and calculate all the pairwise cosine similarities. Return a weighted sum
of the average of these similarity scores and the minimum of the similarities (to
penalize having a weak link). Put your code inside
calculate_group_internal_score,

- The external score measures how different the words in a group are from words in
other groups. Return the negative of the mean of all the pairwise cosine similarities
of words in the group versus the words in the other groups. Put your code inside
calculate_group_external_score.

- The word ambiguity score measures how semantically ambiguous a single word is in
the confext of a set of words. Return the maximum of all the pairwise cosine
similarities between this word and the set of words. This means that if this word is

highly similar to another word, it must be semantically ambiguous or have several
different meanings attached to it. Put your code inside
calculate_word_ambiguity.

Finally, calculate the overall or total score of this quartet in calculate_total_score by
taking a weighted sum of all three scores. Note that for the word ambiguity penalty, since
calculate_word_ambiguity only looks at a single word, take the average of all of the
word ambiguity scores and make it negative—this will be your overall word ambiguity
penalty. See the function signature and return statement of calculate_total_score
for some more insight.

#1 Milestone 4 - Looking For More Treasure: Refining Our Search
Algorithm

A limitation of our current search algorithm is that it relies entirely on the starting
node—the word we begin with. Refine our algorithm by looping through all words in the
puzzle, using each as a starting point in the search, and return the quartet that attains the
best score from calculate_total_score in the previous Milestone. You'll only need to
add a few lines to find_best_quartet.

Milestone 5 - Fool's Gold: Comparing Our Solutions Against Wyna's
Answer

In this milestone, you'll be making two graphs: a histogram and a heatmap.

Make a histogram of the scores of randomly formed quartets from your selected puzzle.
Draw vertical lines where Wyna's solution would fall and where your solution would fall. Put
your code inside graph_scores. We've already provided the function
generate_random_quartet for you; remember to use it—helper functions are your best
friend!

Your histogram should look something like this:

Scores of 1000 Randomly Sampled Quartets of Connections Puzzle #751

T
120 4 —] — = 5olver's Solution
V4 Wyna's Answer
—
Mean: 0.14746
100 Bw |
I
I
1 I
80 [|
B 1
. /] .
=1 I
S 601 I
I
- I
r I
40 A _\ :
[.
1 I
20 A I
4 1 I
n i |
I
0 Il _lr_ T T T I}_-l_\l T T I
0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

Coherence Score

Next, make a heatmap of your favorite puzzle inside graph_pairwise_similarities.
The result should be a 16x16 grid with each square cell denoting the cosine similarity score
between the two words.

¢ Hint: You'll need the heatmap function from the seaborn library with the optional argument
square set to True.

Your heatmap should look something like this:

Pairwise Cosine Similarities of Connections Puzzle #751

nick 026 022 0.22 019 030 034 028 020 027 031 029 027
0.9
palm 041 | 0.37 024 033 025 029 029 026 026 025 030 024 040
pinch 033 025 035 030 032 033 028 032 022 026 026 047
0.8
pocket 0.28 035 028 035 033 021 030 023 035
brush - 0.26 031 040 034 037 032 033 029 040
dress - 0.22 0.24 025 0.29 028 028 031 031 031 025 022 032 0.7
shave - 0.22 033 035 0.29 | 0.43 033 043 027 035 024 022 022 026
shower- 0.19 0.25 0.30 0.30 029 029 019 020 0.30
0.6
neat - 0.30 0.29 032 035 022 030 025 031
sharp- 0.34 029 033 028 040 0.28 043 025 040 028 0.36
-05
smart - 0.28 0.26 028 035 034 031 027 0.23
tdy- 020 026 032 033 037 031 0.35
birth- 0.27 025 022 0.21 032 031 024 -04
key - 0.31 030 026 030 033 025 022
mile - 0.29 024 026 023 029 022 022
-03
touch - 0.27 040 047 035 040 032 026 L
x £ = o = 0 [5 = e = = s > W =
e § ¢ § £ & z £ % : g f®OE ¥ of g
= 8 8 & = ~02

% Milestone 6 - Being One With The Island: Answering Your Questions
About The Solver

Now that you've traversed the island, it's time to get to know it better! Answer the
following questions in investigation. txt:

1. Why does our scoring system work? What does it account for, and what doesn't it

account for? What are some other scoring metrics you can think of? Answer in around
3-4 sentences.

2. Look at the histogram that you made in Milestone 5. What can you say about the
distribution of these randomly sampled quartets? Why does our solution sometimes
attain a higher score than Wyna's solution when our solution is incorrect? Answer in

around 4 sentences, and more thoughts are welcome if you so desire. :)

3. Inyour pairwise similarity cosine graph made in Milestone 4, can you spot any red
herrings for your chosen puzzle? What are some unique quirks about this graph

that you may notice? What do you see, or what don't you see? Answer in around 5

sentences, and, of course, more thoughts are always welcome.

Now, come up with two questions about the solver that you would like to investigate and
tweak in the solver. Perhaps this is how the solver scores solutions, how we search for a
solution, or examining the overall accuracy of the solver—the possibilities are endless!

Jot down your two questions in investigation.txt, and explain how you answered these
questions and what your results after tweaking reveal about the solver.

Good luck with HW8, everyone!

	
	Available on Monday, July 21
	Assignment Logistics
	Starter Files
	Resources
	Getting Help—Your Anchors and Lighthouses
	Submission

	⛵ Milestone 1 - Assembling our Ship: Retrieving Embeddings
	💰 Milestone 2 - Searching for Treasure: Implementing a Greedy Heuristic
	A Prelude: Cosine Similarity

	🎯 Milestone 3 - Alas, Treasure? Scoring Solutions…
	🗺️ Milestone 4 - Looking For More Treasure: Refining Our Search Algorithm
	🧈 Milestone 5 - Fool’s Gold: Comparing Our Solutions Against Wyna’s Answer
	🏝️ Milestone 6 - Being One With The Island: Answering Your Questions About The Solver

